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ABSTRACT
We discuss the Hankel transforms related to a particular application, i.e. the dipole
antenna radiation in conductive media, such as the antenna radiation in sea-bed elec-
tromagnetic applications. In this application, the electromagnetic wavefields decay
very rapidly with distance. A good filter means that it can be used to evaluate weak
fields.

Exponential sampling transforms a Hankel transform into a convolution equation,
which must be solved to obtain the filter coefficients. Here, we use a direct matrix
inversion method to solve the convolution equation in the sample domain, instead of
the Fourier transform method and the Wiener–Hopf method, previously used to solve
the convolution equation. This direct method is conceptually simple and is suitable
for our optimization process: by using the Sommerfeld identity, we search for the
optimum sampling interval, which corresponds to the minimum wavefield, evaluated
for a given length filter.

The performances of the new filters obtained are compared with some well-known
filters. We find that our filters perform better for our application; that is, for the same
length filters, our filters are able to calculate weaker fields.

For users working in similar applications, three sets of filters with lengths 61, 121,
241 are available from the author.

I N T R O D U C T I O N

To calculate the fields generated by a dipole antenna above
or embedded in a layered media, we need to evaluate Hankel
transforms. An efficient way of evaluating these equations is
to use the digital filter technique, which was first proposed by
Ghosh (1971) and later improved by Koefoed et al. (1972),
Koefoed and Dirks (1979), Anderson (1979, 1982, 1989,
1991), Johansen and Sorensen (1979), Guptasarma (1982),
Christensen (1990, 1991), Sorensen and Christensen (1994),
Guptasarma and Singh (1997), and many others.

When using the digital filter technique, the Hankel trans-
forms are first transformed into convolution equations, which
are then solved to obtain the filter coefficients. Previous meth-

∗E-mail: fk@ngi.no

ods to solve the convolution equations or to perform the de-
convolution can, roughly speaking, be divided into Fourier
transform methods and Wiener–Hopf minimization methods.

Here, we construct the convolution equation as a matrix
equation. Thus the deconvolution becomes a direct matrix-
inversion problem. While constructing the matrix equation,
only the input and output sample values are needed. Hence,
we perform the deconvolution in the sample domain.

It is known that the determination of the digital filter is not
unique. Hence, a filter, which is optimum for one application,
may not be optimum for another application. In this article,
the filters are used to evaluate the Hankel transforms related
to the electromagnetic fields generated by a source embedded
in a very conductive medium, such as those encountered in the
sea-bed logging problem, etc. (Eidesmo et al. 2002; Ellingsrud
et al. 2002; Kong et al. 2002). In this application, the fields
decay very rapidly with the measurement distance. One of
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the important criteria defining a ‘good’ filter is the smallest
wavefield that a particular filter can evaluate.

In the Hankel transform filter problem, there are two factors
of importance. One is the evaluation accuracy, or the small-
est fields which can be evaluated; the other is the length of
the filter, which determines the speed with which the Han-
kel transform is calculated. In the sample-domain deconvolu-
tion method, the first step is to define the filter length. The
sample-domain method is then suitable for the optimization
procedure, i.e. searching for the optimum sampling interval to
achieve the minimum wavefield evaluated for a given length
filter. We use this optimization method to derive filters with
three different lengths: 61, 121 and 241. These filters are com-
pared with some known filters.

D I G I TA L F I LT E R D E S I G N

We define the Hankel transform of p(k) of integer order n as

q(r ) =
∫ ∞

0
p(k)Jn(kr )dk. (1)

Assume r = ean and k = e−am. We then have

eanq(ean) =
∞∑

m=−∞
p(e−am)(ea(n−m)Jn

(
ea(n−m)

)
. (2)

Equation (2) becomes a convolution equation. For the con-
venience of later discussions, we rewrite equation (2) in stan-
dard convolution form:

g(n) =
∞∑

m=−∞
f (m)h(n − m), (3)

where g(n) = ean q(ean) is the known output function, f (m) =
p(e−am) is the known input function, and h(n − m) = (ea(n−m)

Jn(ea(n−m)) is the kernel response to be determined.
The earlier methods used to solve the convolution equa-

tion or to perform the deconvolution can be divided into two
categories. The first type of method has to perform deconvo-
lution in the spectrum domain, i.e. it has to obtain the filter
response in the spectrum domain by using the division of the
output spectrum and the input spectrum. The filter response
in the sample domain is then obtained by performing an in-
verse Fourier transform on the filter spectrum. According to
the literature, this type of method is most frequently used.

The other type of method uses the Wiener–Hopf minimiza-
tion method. This method was first introduced by Koefoed and
Dirks (1979), and later improved by Guptasarma (1982) and
Guptasarma and Singh (1997). The Wiener–Hopf minimiza-
tion method does not need to use the spectra of the input and
output functions. Instead, it uses the input and output samples

directly in the sample domain, and hence it is a sample-domain
method.

Here, we propose a direct method to solve the convolution
equation referred to above. First, we assume that the unknown
function h(n − m) has a limited length 2 L + 1 in the sample
domain. From equation (3), it can be seen that for each func-
tion g(n) and the corresponding 2 L + 1-values of f, that is f(n
− L) to f(n + L), we can obtain an equation. To solve the ker-
nel response h(n − m) with 2 L + 1 unknowns, we needs 2 L
+ 1 equations. Analytical expressions for the functions f and g
are given by equations 4 and 5 below, and we can have infinite
number of known functions g(n) and f(m). Hence, it can be an
overdetermined system. The Wiener–Hopf method is an opti-
mization method to solve this overdetermined system. Here,
we choose only n = −L to L to construct 2 L + 1 equations for
solving the kernel response with 2 L + 1 unknowns, which can
be obtained by inverting the matrix, or using the well-known
synthetic division method. This is the main difference between
our method and the Wiener–Hopf method.

We have chosen the following analytical Hankel transform
expressions (see, e.g. Guptasarma and Singh 1997) to calculate
the kernel responses, J0 and J1, respectively:
∫ ∞

0
ke−ck2

J0(kr )dk = 1
2c

e− r2
4c , (4)

∫ ∞

0
k2e−ck2

J1(kr )dk = r
4c2

e− r2
4c , (5)

where the value c = 3 is chosen.
The optimization procedure is as follows

(a) Choose the length of the filter and use r = ean and k =
e−am to sample the input f(n) and output g(n) of equation
(4), with the sampling interval a varying from 0.005 to
0.4 in steps of 0.005.

(b) Solve the matrix equation (3) using any matrix inversion
routine, or the synthetic division method, and obtain a set
of J0 filter coefficients for each sampling interval a.

(c) Use the J0 filters obtained to evaluate the following Som-
merfeld identity (see, e.g. Equation (B5) in Appendix B of
Chave and Cox 1982):

∫ ∞

0
dkJ0(kρ)

k
β

e−β|z−z′ | = e−γ R

R
. (6)

Equation (6) is related to the antenna radiation in a ho-
mogeneous and conductive medium, where ρ is the radial
distance, z′ is the height of the source and z is the height
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of the receiver. The parameters are as follows:

z′ = 50 m,

z = 0,

R =
√

ρ2 + z′2,

γ =
√

i2πµ0 f σ ,

β =
√

k2 − γ 2,

frequency f = 1 Hz,
conductivity of the medium, σ = 3.2 S/m.
For each J0 filter, which corresponds to a sampling inter-
val a, we calculate the smallest wavefield evaluated, and
obtain a curve of the smallest field (magnitude) versus the
sampling interval a.

(d) Choose the optimum sampling interval, which corre-
sponds to the minimum of the smallest field curve.
Fig. 1 shows three curves of the smallest fields for the
filter length 61, 121 and 241. Table 1 shows the optimum
sampling intervals for different filter lengths. Not surpris-
ingly, the optimum sampling interval is smaller for longer
filter lengths.

(e) Use the optimum sampling intervals, shown in Table 1,
and equation (5) to obtain J1 filters for lengths 61, 121
and 241. The J0 and J1 filter coefficients for filter lengths
61, 121 and 241 can be obtained on application to the
author. The sampling functions are:

ean, a = 0.145 and n = −30–30 for filter length 61;
ean, a = 0.115 and n = −60–60 for filter length 121;
ean, a = 0.065 and n = −120–120 for filter length 241.

N E W F I LT E R P E R F O R M A N C E T E S T

For convenience, we use the following definitions
� Anders801: 801-point Anderson filters for J0 and J1 inte-

grals (Anderson 1982);
� G & S120: 120-point Guptasarma and Singh filter for the

J0 integral (Guptasarma and Singh 1997);
� G & S140: 140-point Guptasarma and Singh filter for the

J1 integral (Guptasarma and Singh 1997);
� New61, New121 and New241: 61-point, 121-point and

241-point filters for the J0 and J1 integrals described here.
Guptasarma and Singh (1997) made a comprehensive com-

parison of many types of filter. From the comparison results

Figure 1 Smallest fields evaluated while varying the sampling interval
for different filter lengths.

Table 1 Optimum sampling interval versus filter length

Filter length 61 121 241
Optimum sampling interval a 0.145 0.115 0.065

for six known Hankel transforms, it has been shown that An-
ders801, G & S140 and G & S120 always perform the best
and therefore we chose these three filters to compare with our
filters. Another reason to choose Anders801 is that it is used
in a well-known software package for modelling the field gen-
erated by a horizontal dipole in sea-bed CSEM (controlled-
source electromagnetic) measurements, using the modelling
code of Chave and Cox (1982), as referred to by MacGregor
and Sinha (2000).

We use the Sommerfeld identity (equation 6) for the J0 filter
comparison, and the following equation (equation (B3), Chave
and Cox 1982) for the J1 filter comparison:

∫ ∞

0
dkJ1(kρ)

k2

β
e−β|z−z′ | = ρ

e−γ R

R3
(γ R + 1), (7)

with parameters as defined in equation (6).
Fig. 2 compares the performances using the Sommerfeld

identity (equation 6). It can be seen that our New61 has a sim-
ilar performance to G & S120, in terms of the smallest field
evaluated. New121 has a similar performance to Anders801.
However, New121 and Anders801 can evaluate a smaller field
(by a factor of 104) than New61 and G & S120. The perfor-
mance of New241 is the best with another 105 improvement.
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Figure 2 Comparison of J0 filters for evaluating the Sommerfeld
identity.

Figure 3 Relative errors using different J0 filters.

Note that Fig. 2 shows only the magnitudes of the complex
fields.

Fig. 2 shows that all the filters can evaluate the fields very
well within a distance of 4000 m. To examine the performance
in detail, Fig. 3 shows the relative errors (relative to the theo-
retical value) for these filters.

Fig. 4 compares the results for J1 filters. Comments on Fig. 4
are similar to those made for Fig. 2 above.

To evaluate the performance of the combined use of J0 and
J1 filters, we use the equation for the in-line E-field (equation
(30), Chave and Cox 1982), generated by a horizontal electric

Figure 4 Comparison of J1 filters for evaluating equation (7).

dipole placed in the sea (σ = 3.2 S/m):

Eρ = IL
4πσ

{∫ ∞

0
dk

(
S(kρ)βRTM − J1(kρ)

ρ

γ 2

β
RTE

)
e−β(z+z′)

−
∫ ∞

0
dk

(
J0(kρ)kβ − J1(kρ)

ρ

γ 2

β

)
e−β|z−z′|

}
, (8)

where I and L are the dipole current and length, Z and Z′ are,
respectively, the receiver height (Z = 0) and the transmitter
height (Z′ = 50 m) to the sea-bed with conductivity 1 S/m,
S(kρ) = kJ0(kρ) − J1(kρ)

ρ
, and RTM and RTE are, respectively, the

TM-wave and TE-wave reflection coefficients at the sea/sea–
bed interface.

Fig. 5 compares results using the CSEM software to calcu-
late the fields generated by a horizontal electrical dipole. The
original software uses Anders801 to evaluate the combination
of J0 and J1 integrals. We have now incorporated our filters
into the software for comparison purposes. Although the ana-
lytical result is not known for this problem, it is known that in
the far-field, the field decay rate is the same as that of the wave
travelling in the homogeneous sea-bed material. Hence, the
field magnitude versus distance will appear as a straight-line
decay with a logarithmic y-axis, and the field will have a lin-
ear phase change for the far-field region. Based on this, we can
see from Fig. 5(a) (magnitude) and Fig. 5(b) (phase) that the
New241 filter performs very well up to the distance 15000 m
where the E-field is as weak as 10−25 V/m. Using Anders801,
the calculated field starts to contain errors at a distance of
11000 m (E-field: 10−21 V/m). The New61 and New121 can
be used to calculate fields up to distances of 6000 m (E-field:
10−16 V/m) and 10000 m (E-field: 10−20 V/m), respectively.
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Figure 5 (a) Comparison of J0 and J1 filters for evaluating the magni-
tude of the ER-field (equation 8). (b) Comparison of J0 and J1 filters
for evaluating the phase of the ER-field (equation 8).

The e-field in the z-direction (vertical) generated by a hori-
zontal electrical dipole can be written (chave and cox 1982),

EZ = − IL
4πσ

∫ ∞

0
dkJ1(kρ)k2

(
RTMe−β(z+z′) + eβ(z−z′)

)
. (9)

The results of the comparison between Anders801 and
New241 for EZ are shown in Figs 6(a.b).

D I S C U S S I O N A N D C O N C L U S I O N

We have found a method to derive optimum filters for eval-
uating the Hankel transforms related to antenna radiation in
a very conductive medium. Our New121 filter can evaluate
weaker fields than G & S120 and G & S140 can, and our
New241 filter can evaluate weaker fields than Anders80 can.
Since the comparison is made for filters with different sam-
pling intervals, it is not possible to say that our method is
better than the methods used for obtaining G & S120, G &

Figure 6 (a) Comparison of filters for evaluating the magnitude of
the EZ-field (equation 9). (b) Comparison of filters for evaluating the
phase of the EZ-field (equation 9).

S140 and Anders801. We only say that for our particular ap-
plication, use of our filters will save calculation time due to
the short filter length and it will give better accuracy.

Christensen (1990, 1991) noted that the error decreases ex-
ponentially with the cut-off frequency. Hence, a moderate de-
crease in sampling interval will cause the error to decrease
dramatically. Observing Fig. 1, our filters show the same be-
haviour although they are generated quite differently from
Christensen’s method. The smallest field evaluated decreases
exponentially as the sampling interval is decreased over a cer-
tain range. However, Fig. 1 also shows that there is a limit
to the increase in accuracy achieved by reducing the sampling
interval. Beyond a certain point, reducing the sampling inter-
val will reduce the accuracy. There is an optimum sampling
interval for each filter length, the optimum sampling interval
being smaller for longer filter lengths.

Table 2 shows a list of the sampling intervals for different
filters. It is interesting to note that the sampling intervals of
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Table 2 Sampling intervals for different filters

Authors Filter length Sampling interval

Koefoed et al. (1972) 47 0.23
Johanson (1975) 141 0.23
Nyman and Ladisman (1977) 31 0.22
Anderson (1979) 51 0.2
Anderson (1982) 801 0.1
Mohsen and Hashish (1994) 256 0.2
Guptasarma and Singh (1997) 47 0.25
Guptasarma and Singh (1997) 61 0.27
Guptasarma and Singh (1997) 120 0.21
Guptasarma and Singh (1997) 140 0.20

many published filters are around 0.2–0.25. This suggests that
the sampling interval, as an optimization variable, should be
further investigated in the future. Here, we only comment that
in the sample-domain method, as in our method, there is no
additional cost when using a small sampling interval. The cal-
culation time for evaluating a Hankel transform is only related
to the filter length, not to the sampling interval.

We use direct matrix inversion to solve the convolution
equation (3). Compared to another type of sample-domain
method, i.e. the Wiener–Hopf method (Koefoed and Dirks
1979; Guptasarma 1982; Guptasarma and Singh 1997), our
direct method is much simpler. Guptasarma (1982) noted that
the advantage of his method of sample-domain optimization
might be lost if the length of the filter were increased and that,
in any case, his method would be too laborious for large filter
lengths. Guptasarma and Singh (1997) also mentioned some
complications in solving the Wiener equation. In our case, the
deconvolution is simple and fast, and there is no problem in
generating long filters. The optimization curve for filter length
241 (the black curve in Fig. 1) is obtained in only 8 s on a
2.4 GHz PC. It involves obtaining 80 filters of length 241 for
80 sampling intervals varying from 0.005 to 0.4 in steps of
0.005 and evaluating the Sommerfeld identity 80 times. Here,
we should note that in our optimization, we use only one vari-
able, i.e. the sampling interval, instead of two variables, i.e.
the sampling interval and the shift of Guptasarma and Singh
(1997). Investigation into the effect of sampling shift on our
optimization is a task for the future. Other future tasks are to
optimize the value c defined in equation (5) and to consider
‘nonsymmetric’ filters. For the present, we have only consid-
ered the ‘symmetric’ filter case, i.e. n = –L to L.

The common feature of the wavefields in our application is
that they decay exponentially in the far-field. We use the Som-
merfeld identity to derive the optimum sampling interval, be-

cause it reproduces this common feature. This guarantees that
the sampling intervals optimized by the Sommefeld identity,
a J0 integral, can be used to evaluate other Hankel integrals
related to our application. This may also explain why our fil-
ters, which are optimized for our application, perform better
than G & S120, G & S140 and Anders801 filters in solving
our special problems. In principle, the sampling function for
the J1 filter should be optimized separately using, for example,
equation (7). However, it is practical to have the same sam-
pling function for both J0 and J1 filters, since calculating the
dipole antenna radiation involves the evaluation of both J0

and J1 integrals, as shown in equation (8). From Figs 5 and 6,
we can see that the J1 filters generated by the present method
work well.

Fig. 3 shows the phenomenon of the relative errors of our
filters increasing exponentially with distance, for far-fields.
This explains why the numerical results in Figs 2 and 4 fit the
analytical results very well for shorter distances and, from a
certain distance, why the numerical results flatten out. Due
to this flattening, the minimization of the smallest signal over
the total distance of 15000 m becomes equivalent to the min-
imization of the fields at the turning point where the fit starts
to deteriorate. This must be true for the case with filter length
241, since the numerical curves are very flat after the turning
point. An alternative optimization criterion can be to minimize
the calculated field at which the relative error reaches a certain
value. We have tested these optimization criteria when choos-
ing a relative error of 0.2. Both optimization criteria yield the
same optimum values of a.
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